Complete toric varieties with reductive automorphism group

نویسنده

  • Benjamin Nill
چکیده

We give equivalent and sufficient criteria for the automorphism group of a complete toric variety, respectively a Gorenstein toric Fano variety, to be reductive. In particular we show that the automorphism group of a Gorenstein toric Fano variety is reductive, if the barycenter of the associated reflexive polytope is zero. Furthermore a sharp bound on the dimension of the reductive automorphism group of a complete toric variety is proven by studying the set of Demazure roots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quotients by non-reductive algebraic group actions

Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...

متن کامل

Automorphisms of Certain Projective Bundles over Toric Varieties

The purpose of this note is to exhibit the automorphism group of a projective bundle P(E) over a simplicial toric variety X when the bundle E is a direct sum of equvariant line bundles. This case is important in the study of moduli of complete intersections on toric varieties including projective spaces. The main result is that the automorphism group of P (E) is, up to a finite group, the semi-...

متن کامل

Stable Spherical Varieties and Their Moduli

We introduce a notion of stable spherical variety which includes the spherical varieties under a reductive group G and their flat equivariant degenerations. Given any projective space P where G acts linearly, we construct a moduli space for stable spherical varieties over P, that is, pairs (X, f), where X is a stable spherical variety and f : X → P is a finite equivariant morphism. This space i...

متن کامل

Stable Reductive Varieties I: Affine Varieties

0. Introduction 1 1. Main definitions and results 3 2. General criteria 6 2.1. Seminormality and connectedness of isotropy groups 6 2.2. Finiteness of number of orbits and group–like condition 9 3. Orbits in stable reductive varieties 11 3.1. Isotropy groups 11 3.2. Algebras of regular functions 14 4. Reductive varieties 18 4.1. Classification 18 4.2. Associated stable toric varieties 20 5. Sta...

متن کامل

Intersection cohomology of reductive varieties

We extend the methods developed in our earlier work to algorithmically compute the intersection cohomology Betti numbers of reductive varieties. These form a class of highly symmetric varieties that includes equivariant compactifications of reductive groups. Thereby, we extend a well-known algorithm for toric varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004